2024/03/25 05:10 1/11 Technical Documentation

Technical Documentation

WIP/outdated

Backups

With the help of the Tartarus backup solution, the data from the AWP directory is automatically
backed up in Hetzner’s Storage Box. This solution was chosen because the servers are already
contracted with Hetzner and the backup storage was supplied free of charge.

The tartarus command starts the backup. A configuration file needs to be defined. A configuration
file must still be specified. For different backup profiles, these are located under
/etc/tartarus/*.conf . They contain the information, which directory is backed up and where
Tartarus stores the markers for the incremental backups. The marker files are maintained by Tartarus
itself, but a path to the marker file must be created for each backup profile beforehand. For the
backup profile of the Minetest directory it looks like this:

/var/spool/tartarus/timestamps/backupprofilname When creating a new backup profile,
the path must be adjusted.

The generic.inc file contains the most important settings regarding the connection to the Hetzner
server. In addition, the -i option can be used to switch to incremental instead of complete backups.
For this, a complete backup must first be performed before an incremental backup can be started
with the same profile.

_sudo tartarus /etc/tartarus/Name der Backupprofilkofgurationsdatei creates a
backup according to the specified configuration profile.

_sudo tartarus -i /etc/tartarus/Name der Backupprofilkofgurationsdatei creates
an incremental backup according to the specified configuration profile.

To perform a cleanup of the storage box after each backup, the script charon.ftp invoked
automatically under /usr/sbin | after Tartarus. . This deletes all backups older than 13 days belonging
to the same profile after the new backup is created. This ensures that the storage space of the
Storage Box is cleared again. In the /etc/tartarus/ generic.inc_a hook was inserted for this. There
you could also define the maximum age. Complete backups can only be deleted if all incremental
backups based on them have been deleted. With the Hetzner administration robot
https://robot.your-server.de/storage you could check the used storage space. It is important to note
that Hetzner’s robot only updates every 15 minutes.

To access the content from the server, the backup storage has been mounted at
/home/awp/backups. Use sudo crontab - to view the current automation. With sudo crontab -e the
automation can be adjusted.

To access the content from the server, the backup storage has been mounted at
_/home/awp/backups . Use sudo crontab -1 to view the current automation. To adjust the
automation use sudo crontab -e .

BLOCKALOT Wiki - https://wiki.blockalot.de/

https://robot.your-server.de/storage

Iia;;;pdate: 2022/10/12 en:intern:doku:technische_dokumentation https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

These two entries ensure that a backup is performed by Tartarus at 22:30. From Monday to Saturday
these backups with the configuration profile are carried out incrementally. On Sundays a complete
backup is performed with the configuration profile.

Dokumentation CheckMK

Use the CheckMK monitoring tool to monitor and check the most important services of the server.
CheckMK can be operated via a web interface and can also be configured in this interface.

The web interface can only be used if monitoring has been started. Check-MK uses the ,open
monitoring distribution” (omd) for monitoring. OMD can create instances, so called sites, with which
you can monitor the server independently. Currently an instance has been created, which has been
named ,, monitoring”. To start the monitoring on this instance, execute the command omd start
monitoring . The instance can also be stopped again with the command omd stop monitoring .

Once the instance is started, the web interface can be accessed via
http://minetest.Imz-bw.de/monitoring.

Hosts:

CheckMK needs a host to monitor services. Here the Linux server with the IP address (188.40.113.24)
was set up as host. Each host has a number of services that are automatically detected and
monitored by CheckMK.

Services:

70 ihomelawpibackups

QK CPU load Ml OK- 15 min load: 0.14 at 12 Cores (0.01 per Core) 13h 2695 0.0100

OK CPU utilization W OK-User 0.82%, System: 0.31%, Wait: 0.008%, Total CPU: 1.13% 13h 269s | 143%

All currently monitored services are displayed on the home page. You can get the most important
information about each monitored service immediately. If you click on the service name (for example,
CPU load) you will get all the information about this service. Each service is assigned a state by the
system which is derived from the rules defined for this service. The state is either ok, warn, crit,
unknown or pend.

Klick on the menu button to automatically restart the check or display the check parameters. Click on
with the graph icon to get one or more graphs that show you the evolution of the numbers for this
service.

https://wiki.blockalot.de/ Printed on 2024/03/25 05:10

https://wiki.blockalot.de/_detail/doku:tartarus.png?id=en%3Aintern%3Adoku%3Atechnische_dokumentation
http://minetest.lmz-bw.de/monitoring
https://wiki.blockalot.de/_detail/doku:checkmk1.png?id=en%3Aintern%3Adoku%3Atechnische_dokumentation

2024/03/25 05:10 3/11 Technical Documentation

Local site monitoring, monitoring, CPU load

CPU Load - 12 CPU Cores 2021-02-06 @ 1m

The lasi 4jhgurs
0.700

0.600

0.500 The last 25.

0.400

0.300

o200 & : 'R a4 WEFy W '. Yy
ol \ 1 X 1 i k ¥
0.100 (1 3 ‘ il w ¥ N v ‘ "‘ ! ' ‘v
0 2021-02-06 12:10:36 = |==125 day
02:40 10:00 10:20 10:40 11.00 11:20 11:40 12:.00 B 0.130 3:00 13:20
W 0.197
B 0.187
MINIMUM MAXIMUM AVERAGE LAST The last 400 days |
Il CPU load average of last 15 minutes 0.0730 0.244 0.149 0160 -
B CPU load average of last 5 minutes 0.0630 0.362 0.172 0.160
B CPU load average of last minute 0.00117 0.733 0.184 0.227
[] Waming 60.0
— B Ciilical D

The graph shows an overview of the course of the service over the last 4 hours. You can change the
graphic on the x-axis (time) as well as on the y-axis (CPU load) and also zoom in. So it is possible to
display the graph you need. The threshold values are also displayed or when a value gets the status
warning or critical. You can thus see how busy the service currently is.

Currently 20 services are monitored. To access all services or to monitor other services as well, you
have to change the configuration in the Wato menu. To do this, click on Host in the Wato
configuration and select the service icon for the ,monitoring” host. In this menu, all detected services
are displayed and you can enable or disable services as you wish. To change the rule for the status of
a service, you have to adjust the check parameters with a new rule. To do this, click on the parameter
icon and create a new rule with new values in the ,main folder

It is important to note that if something is changed or something is added, you still have to confirm
this change before the change is made.

User:

You can view all users in the Wato menu under the User item. In this menu, you can create new users
as well as edit current users. Currently the users cmkadmin and aufseher are configured. Both users
have full administration rights and for both a mail address is entered. You can find the login data for
both users in the password database.

Notification:

For both active users a mail address is registered. A mail is sent to these addresses as soon as the
status of a service changes. The mail contains information about which service has changed and a
graph that shows the development of the service over the last day. Both users are currently
registered in the contact group ,Everything”. If you do not want to be notified about every service you
have to change the contact group in the Wato menu or create a new contact group.

Logs:
The different logs are stored by omd. They are stored in the folder /omd/sites/monitoring/var/log /.
Further Documentation:

You can find detailed documentation on all features of Checkmk here:
https://docs.checkmk.com/latest/de/index.html

BLOCKALOT Wiki - https://wiki.blockalot.de/

https://wiki.blockalot.de/_detail/doku:checkmk2.png?id=en%3Aintern%3Adoku%3Atechnische_dokumentation
https://docs.checkmk.com/latest/de/index.html

Last update: 2022/10/12

18:55 en:intern:doku:technische_dokumentation https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

Documentation of Service Architecture

2 Servers:
e Webhosting (www.blockalot.de):
Services:

o Website
e Mail Server

Access:

e KonsoleH on https:<nowiki>//</nowiki>konsoleh.your-server.de (access data: KonsoleH in the
keepass)

Backend Server (minetest.Imz-bw.de):
Services:

Minetest
Postgres database
Backend
Keycloak
CheckMK

-

Access:

e ssh address: 188.40.113.24 or minetest.Imz-bw.de (access: awp user server or root user server
in the keepass)

Documentation Backend

The backend provides the required functionalities for the frontend via an interface.

Interface

The interface is a rest interface that is used to provide required data and functionality using the HTTP
methods.

Using https:<nowiki>//</nowiki>minetest.Imz-bw.de:1234/api-docs a documentation of the currently
available endpoints based on the Open API 3.0.3 standard was created with the help of swagger.
Authentication with a bearer token is required to use the interface.

Technology

The programming language used for the backend is //TypeScript// in version 4.1.3. For the interface

https://wiki.blockalot.de/ Printed on 2024/03/25 05:10

http://www.blockalot.de/
https://konsoleh.your-server.de/
http://minetest.lmz-bw.de/
http://minetest.lmz-bw.de/
https://www.minetest.lmz-bw.de:1234/api-docs
http://spec.openapis.org/oas/v3.0.3
https://oauth.net/2/bearer-tokens/#:~:text=Bearer%20Tokens%20are%20the%20predominant,such%20as%20JSON%20Web%20Tokens.
https://www.typescriptlang.org/

2024/03/25 05:10 5/11 Technical Documentation

we used Express version 4.17.1. The DBMS we used is PostgreSQL, since it also serves as the
database for the Minetest servers. For user management we use a keycloakserver, which runs on
version 12.

Versioning

The code for the backend was versioned using Git. You find the complete commit history on GitHub. It
should be noted that the current state of development is in the main branch. In the live branch is the
current running state. It is available here.

Pipeline

Two pipelines have been created using GitHub Actions.
The first is a quality assurance pipeline. It executes the following commands in the order given:

1. npm ci = check the deployed dependencies
2. npm run lint:ci » Check code quality using ESLint

With the help of the second pipeline, the code can be deployed on the currently used Linux machine
at Hetzner. With each incoming commit on the branch live, a script is executed that transfers the
code via FTP to the Linux server and executes the following commands:

systemctl -user stop prod_backend - stops the Linux service
npm install - download necessary dependencies

npx tsc » compiling with TypeScript Compiler

systemctl -user start prod_backend - restart the Linux service

W

In addition, a pre-commit hook was set up with Huskythat executes the command npm run lint:ci
before every attempted commit. This is to prevent code with insufficient code quality from ending up
in the repository.

Authentification

In order to successfully authenticate on the backend, you must first fetch a token from our keycloak
server here. This requires a POST request with the content type application/x-www-form-urlencoded
with the following payload:

e grant_type: password

e username: <html><testuser></html>

e password: <html><password></htm|>

e client_id <html><client ID></html> - the client we currently use for the frontend is called
vue-client

If you enter the above data correctly, you will receive a JWTin the response under the property
access_token that must be sent with a request to the backend as authorization header in order to
authenticate yourself.

BLOCKALOT Wiki - https://wiki.blockalot.de/

http://expressjs.com/
https://www.postgresql.org/
https://www.keycloak.org/
https://github.com/blockalot/Backend
https://www.minetest.lmz-bw.de:1234
https://github.com/features/actions
https://docs.npmjs.com/cli/v6/commands/npm-ci
https://eslint.org/
https://www.hetzner.com/de/
https://www.npmjs.com/package/husky
https://www.minetest.lmz-bw.de:8443/auth/realms/lmz_prod/protocol/openid-connect/token
https://jwt.io/

Last update: 2022/10/12

18:55 en:intern:doku:technische_dokumentation https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

Procedure of Incoming Requests

The following procedure is used for processing incoming requests:

1. Parsing the body using express.json()

2. Security check of the request using helmet

3. Authentication and extraction of the user ID from the token -» Custom middleware under
/src/security/validatejwt.ts

4. Execution of a handler that takes over the flow control for the processing of the request -
Handler functions under /src/handler/<html><http-methode></html>-handler.ts

5. Running the various services by the handler - Service functions under /src/service

Error handling » with error handler under /src/handler/error-handler.ts

7. Sending a corresponding response

o

Code Documentation

The code was annotated with comments in JSDoc format following the recommendation from the
Empfehlung aus der TypeScript documentation.

Documentation Website

Blockalot’s frontend is the part of the application that end users operate to manage their
BLOCKALOTSpaces.

Design

The website design is based on the corporate design of the LMZ: The colors, especially orange and
olive green, of the LMZ homepage were adopted. The logo and some graphics were also adopted or
modified. For some elements, for example, for the ,,cards” of the BLOCKALOTSpaces on the
dashboard, we used neumorphism. While this provides a modern look, its suitability, especially in
terms of contrast, should be further reviewed.

A mockup for the website was created using Figma. It can be viewed here. If changes need to be
made, please contact rech1033@hs-karlsruhe.de for access.

The colors used on the website are defined as global variables in the src/css/colors.css file. This allows
changes to these color codes to change the corresponding colors throughout the site. Thus, for
example, the application could be adapted to a different corporate design with little effort. In addition,
the implementation of a ,,darkmode” can be realized, for which an example can already be found in
the mockup.

Technology

The frontend is written with the JavaScript framework Vue in version 3.0.0. Vuex was used for state
management. We tried to avoid external code to reduce dependencies.

https://wiki.blockalot.de/ Printed on 2024/03/25 05:10

http://expressjs.com/en/api.html
https://www.npmjs.com/package/helmet
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://www.figma.com/file/hDVSUEyJKd6Oij7IlE01A1/Mockup?node-id=0%3A1

2024/03/25 05:10 7/11 Technical Documentation

Versioning

You can view all dependencies and their versions in repository on Github or in the package.json file. In
addition, a pipeline for quality assurance and automatic deployment has been set up there using
GitHub Actions, analogous to the backend.

Structure

The root file is src/App.vue. This includes the navbar, the footer and the current view. The current
view is determined by Vue-Router, the corresponding file is src/router/index.js. The views are located
in src/views and correspond to the different pages of the application (Home, Dashboard, FAQ,
BLOCKALOTSpaces, Imprint and Data Protection).

The views include different components that are stored in src/components. Some of these
components, for example the button, can be reused throughout the frontend. Vuese can be used to
generate more information about each component. Vuese automatically generates documentation for
the components. The generated files are written in Markdown and are located in website/components.
A website can be hosted locally that displays all Markdown files of the component documentation in a
formatted way. For this, you need to install Vuese globally and then run vuese serve -open (see Vuese
documentation).

The store (state management) is defined in src¢/store/index.js. This is where state manipulations are
performed and API calls is activated from the src/api/api.js file. These are responsible for
communication with the backend.

The password and PDF generation functions are stored in the src/functions folder to make the code
more concise. All graphics are located in src/assets.

Documentation Keycloak

The keycloak server is used for the user management of the website. The name of the service on the
Linux machine is keycloak. The logs can be found using the following path:
/keycloak-12.0.2/standalone/log/server.log

The keycloak installation is located in the folder keycloak-akt. Version number. Keycloak is run in
standalone mode (the corresponding configuration is also located in this folder).

There is a realm (= collection of all settings and configurations) for testing (Imz_dev) and one that is
live (Imz_prod). The configuration can also mostly be done via a user interface (e.g. creating new
users):

https://minetest.Imz-bw.de:8443/auth/admin/Imz_prod/console/ (configuration of all realms possible)
https://minetest.Imz-bw.de:8443/auth/admin/Imz_prod/console/ You find the access data for this in the
keepass. The appearance of the login page as well as the user profiles must be customized via
Keycloak and not via the frontend (folder themes).

Documentation Postgres

Postgres is the DBMS we use for both our backend and Minetest servers. It does not have its own

BLOCKALOT Wiki - https://wiki.blockalot.de/

https://github.com/blockalot/Frontend/network/dependencies
https://vuese.org/cli
https://vuese.org/cli
https://minetest.lmz-bw.de:8443/auth/admin/lmz_prod/console/
https://minetest.lmz-bw.de:8443/auth/admin/lmz_prod/console/

Last update: 2022/10/12

18:55 en:intern:doku:technische_dokumentation https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

service name, such as Keycloak. It is managed using the following command:

sudo pg ctlcluster 13 main (reload|start|restart) sudo pg_cticluster 13 main
(reload|start|restart) The logs are located at /var/log/postgresql/postgresql-13-
main.log In Postgres, each world has its own database that contains seven tables. There is also
another database where our backend manages its data on created BLOCKALOTSpaces.

The access to the Postgres database is done via SSH. With The access to the Postgres database is
done via SSH. With sudo -u postgres psql the database can be accessed. With sudo -u postgres
psql the database can be accessed. With |/ all databases are displayed. With \c databaseName you
create a connection to a specific database. With \d the contained tables can be displayed.

For a more convenient administration, the database can be accessed via pgAdmin. For this, a local
installation as well as a depositing of the IP address in the Config file in
/etc/postgresql/13/main/pg_hba.conf is necessary. For this, the IP address must be attached below
(following the pattern of the existing entries). After that a reload of the configuration with the
command sudo pg ctlcluster 13 main reload is necessary.

In our backend database, inconsistent data may have resulted from errors during testing. These can
be traced with the following command:

SELECT * FROM (SELECT d.datacl, d.datname, w.* FROM pg_database AS d FULL JOIN worlds AS w ON
LW, worldld“ = substring(d.datname, 2)::INTEGER

WHERE datistemplate = false AND datname LIKE 'k%') AS all_databases WHERE port IS NULL OR
datname IS NULL ORDER BY datname;

The command matches the databases of the BLOCKALOTSpaces with the entries in our backend
database and displays the deltas.

Minetest

The name of the services of each BLOCKALOTSpace is derived from the following service: k <
klassenzimmerlD>

The logs are located In the debug. txt file in the respective BLOCKALOTSpace folder in
/home/awp/minetest-live/worlds/<html><userlD></html>/<html><classroomID></htmlI>. Here, the
userlD is the ID of the account from Keycloak. The BLOCKALOTSpace folder also contains all the
associated configuration files.

The current used Minetest installation is located in the home directory AWP (/home/awp) in the
folder minetest-live. In the folder /mods, you find the current globally installed mods. Find
documentation about the installed mods in mod_uebersicht .

Each world has its own postgres database in which the ingame data (player inventory, access data,
blocks of the world, etc.) is stored (the access data can be found in the respective world.mt (or in the
password database see Postgres).

Each world has its own service in Systemd.
More information:

The installation is done as follows:

https://wiki.blockalot.de/ Printed on 2024/03/25 05:10

https://wiki.blockalot.de/mod_uebersicht

2024/03/25 05:10 9/11 Technical Documentation

Navigate to the desired folder

export branch=$(printf "Enter Minetest version: ">&2;read r;echo "$r")
Current version: stable-5

(sudo apt-get install -y unzip g{it,cc,++} {c,}make

{zliblg, lib{sqlite3, curl4-openssl,luajit-5.1, leveldb,pq}}-dev&& \

cd $(mktemp -dp /var/tmp)&&wget
downloads.sourceforge.net/irrlicht/irrlicht-1.8.4.zip -0 irr.zip&& \

unzip -q irr.zip&&git clone -b $branch
https://github.com/minetest/minetest&&cd minetest&& \

git clone -b $branch {https://github.com/minetest,games}/minetest game&& \
cmake . -

D{BUILD CLIENT=0,{BUILD SERVER,RUN IN PLACE,ENABLE POSTGRESQL,ENABLE CURSES}
=1,\

IRRLICHT INCLUDE DIR=$PWD/../irrlicht-1.8.4/include,POSTGRESQL INCLUDE DIR=/
usr/include/postgresql/,\

POSTGRESQL LIBRARY=/usr/lib/x86 64-linux-
gnu/libpqg.so0.5.13,PostgreSQL TYPE INCLUDE DIR=/usr/include/postgresql/}&& \
make -j$(nproc) package&&p=$(echo minetest-*.tar.gz)&&cp "$p" ~&& \

printf '\n\n\e[1l;32mBuild successful, an archive called "%s" was placed in
your home folder.\nTo run the server, extract the archive\

and run the executable inside the 'bin/' folder\e[Om\n' "$p")||printf
‘An\n\e[1;31mBuild failed, review log output above to identify and fix the
issue.\e[Om\n

Certificates

The certificates for the backend were created with the following command:
sudo certbot -apache -d minetest.Imz-bw.de

Output:

Saving debug log to /var/log/letsencrypt/letsencrypt.log

Renewing an existing certificate Created an SSL vhost at /etc/apache2/sites-available/000-default-le-
ssl.conf Enabled Apache socache_shmcb module Enabled Apache ssl module Deploying Certificate to
VirtualHost /etc/apache?2/sites-available/000-default-le-ssl.conf Enabling available site:
/etc/apache2/sites-available/000-default-le-ssl.conf

Please choose whether or not to redirect HTTP traffic to HTTPS, removing HTTP access. - - - --------
----------------------------- 1: No redirect - Make no further changes to the webserver
configuration. 2: Redirect - Make all requests redirect to secure HTTPS access. Choose this for new
sites, or if you're confident your site works on HTTPS. You can undo this change by editing your web
server's configuration. - = - == - == - s - - e m e Select the appropriate
number [1-2] then [enter] (press 'c' to cancel): 2 Redirecting vhost in /etc/apache2/sites-enabled/000-
default.conf to ssl vhost in /etc/apache2/sites-available/000-default-le-ssl.conf

BLOCKALOT Wiki - https://wiki.blockalot.de/

http://minetest.lmz-bw.de/

Last update: 2022/10/12

18:55 en:intern:doku:technische_dokumentation https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

—— Your existing certificate has been successfully
renewed, and the new certificate has been installed.

The new certificate covers the following domains: minetest.Imz-bw.de

You should test your configuration at:
https://www.ssllabs.com/ssltest/analyze.html?d=minetest.Imz-bw.de - - - - == - - == - - e e e m i i oo o

IMPORTANT NOTES: - Congratulations! Your certificate and chain have been saved at:
[etc/letsencrypt/live/minetest.Imz-bw.de/fullchain.pem Your key file has been saved at:
[etc/letsencrypt/live/minetest.Imz-bw.de/privkey.pem Your cert will expire on 2021-04-07. To obtain a
new or tweaked version of this certificate in the future, simply run certbot again with the ,certonly”
option. To non-interactively renew *all* of your certificates, run ,,certbot renew” - If you like Certbot,
please consider supporting our work by:

Donating to ISRG / Let's Encrypt: https://letsencrypt.org/donate Donating to EFF:
https://eff.org/donate-le

This certificate was used with the following instructions for Keycloak (possibly adjust path directly):
https://ordina-jworks.github.io/security/2019/08/14/Using-Lets-Encrypt-Certificates-In-Java.html
https://www.keycloak.org/docs/11.0/server_installation/index.html#_start _cli

openssl pkcsl2 -export -in /etc/letsencrypt/live/minetest.Imz-bw.de/fullchain.pem -inkey
/etc/letsencrypt/live/minetest.Imz-bw.de/privkey.pem -out /tmp/minetest.Imz-bw.de_2.p12 -name
http://minetest.Imz-bw.de/ -CAfile /etc/letsencrypt/live/minetest.Imz-bw.de/fullchain.pem -caname
~Let's Encrypt Authority X3“ -password pass:changeit

keytool -importkeystore -deststorepass changeit -destkeypass changeit -deststoretype pkcsl2 -
srckeystore /tmp/minetest.Imz-bw.de_2.p12 -srcstoretype PKCS12 -srcstorepass changeit -
destkeystore /tmp/minetest.Imz-bw.de_2.keystore -alias minetest.Imz-bw.de/%%

Data Model

The application accesses data from four sources.

Source Name Description

All user data is stored here (name, school, password), this is usually
not changed by the application

This is where the information needed for (BLOCKALOTSpace)
administration is stored.

Each world has its own database where game relevant information is
stored (e.g. game passwords, inventory)

This is where the necessary configuration information for the
BLOCKALOTSpaces is stored (mods, spawnpoint, etc.)

Keycloak data

Database ,Backendata“

Databases , k**x“

Directory minetest-live/worlds

The template database is marked as a template and connections are forbidden, because the database
cannot be used as a template if a connection exists.

https://wiki.blockalot.de/ Printed on 2024/03/25 05:10

https://www.ssllabs.com/ssltest/analyze.html?d=minetest.lmz-bw.de
https://letsencrypt.org/donate
https://eff.org/donate-le
https://ordina-jworks.github.io/security/2019/08/14/Using-Lets-Encrypt-Certificates-In-Java.html
https://www.keycloak.org/docs/11.0/server_installation/index.html#_start_cli

2024/03/25 05:10 11/11 Technical Documentation

We have set this up with the following commands:
UPDATE pg_database SET datistemplate = true where datname = 'minetest_templatel’;

UPDATE pg_database SET datallowconn = false where datname = 'minetest_templatel’;

Documentation Tests

For testing the backend there is a Postman Collection with configured tests. These can be easily run
with the collection runner (access must be requested - unfortunately, number of users is limited).
The frontend requires manual testing at the moment.

From:
https://wiki.blockalot.de/ - BLOCKALOT Wiki

Permanent link:
https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

Last update: 2022/10/12 18:55

BLOCKALOT Wiki - https://wiki.blockalot.de/

https://wiki.blockalot.de/
https://wiki.blockalot.de/en:intern:doku:technische_dokumentation

	Technical Documentation
	WIP/outdated
	Backups
	Dokumentation CheckMK
	Documentation of Service Architecture
	Documentation Backend
	Interface
	Technology
	Versioning
	Pipeline
	Authentification
	Procedure of Incoming Requests
	Code Documentation

	Documentation Website
	Design
	Technology
	Versioning
	Structure

	Documentation Keycloak
	Documentation Postgres
	Minetest
	Certificates
	Data Model
	Documentation Tests

